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Abstract sign and evaluation. (See VanLehn & Jones, in press,

Cascade models humans learning college physics by for a complete discussion of its design, and VanLehn,
studying examples and solving problems. It simu- Jones & Chi, in press, for a more complete discussion
lates the main qualitative phenomena visible in hu- of the evaluation). There were two kinds of constraints
man protocols of learning, including several strategies on the design. First, the simulation must display the
for analogical and non-analogical problem solving, and same overt behaviors as the subjects. For instance,
two strategies for studying examples. It learns at the subjects often refer to the examples while solving prob-
knowledge level by acquiring new physics rules, and lems, and rarely refer to the text. This should be true
it learns search control knowledge. Most importantly, of Cascade's performance as well. Second, the simula-
it models a recently observed phenomenon, the self- tion should learn what the subjects learn. The first few
explanation effect, which correlates students' example sections of this paper list the overt behaviors and the
studying strategies with the amount they learn, types of learning that constrain Cascade's design, and

describe how Cascade models each. The last section
discusses its evaluation: does it actually reproduce the

INTRODUCTION self-explanation effect?

The long term goal of the Cascade project is to de-
velop a model of human cognitive skill acquisition in ORDINARY PROBLEM SOLVING
scientific, mathematical and engineering task domains. During the later part of the Chi et. al study, students
The goal for the present version of the system, Cascade solve physics pro f th a l ofudysdnts
3, is to model the data from a study by Chi, Bassok, solve physics problems, such as "A block of mass m is
Lewis, Reimann and (Jlaer (1989), who took proto- kept at rest on a smooth plane, inclined at a angle
cols as students studied a chapter on Newton's laws of 30 degree r with the horizontal, by means of a string
from a standard college physics textbook. The chap- attached to a vertical wall. What is the tension in the
ter consisted of three distinct types of material, which string?" A co eon mode of work is ordinary problem
were presented in the following sequence: text, which solving, where in the student does not refer to the
defines concepts, explains principles and presents an- examples or the text.
cillary information; examples, which pose a problem Cascade models this overt behavior by using a Prolog
and work out its solution; and problems, which the meta-interpreter to prove propositions such as
student solves without feedback or help. Chi et al. value(tension(stringl),X)
discovered that students who learned more also ex- where tension(stringl) is a sought quantity mentioned
plained the examples to themselves more thoroughly. in the problem statement. The proof uses equations
The oest learners checked almost every line of the ex- such as

r'I-"r solution to see if they could generate it them- tension(S) = magnitude(force(BS,tension)),
selves. In particula;, Chi et al. found that the num- which says that the tension in a string S is equa! to
ber of self-explanation utterances in a protc 1! was the magnitude of the tension force exerted on a body
strongly correlated (r=.81) with the students' score B by the string. An eq,,ation has conditions that indi-
on the problems. Since all subjects scored roughly the cate when it applies (e.g., that the string is tied to the
same when tested just prior to studying the examples, body). The combination of an equation and its con-
this shows that better learning is correlated with more dition is called a Cascade rule. The meta-interpreter
relf-explanation of the exata 1, ics. Till, pncr"Mnnmcu,,, i ,i. , : knowledgc built into it so a single Cas-
called the self-explanation cOfect, has been replicated cade rule can be used to infer a value for any of the
twice in other task domains (Pirolli & Bielaczyc, 1989; equation's quantities from the other quantities' values.
Ferguson- Hlessler & de Jong, 1990). Most of Cascade's knowledge is represented with Cas-

Cascade 3 is a machine learning program that models cade rules. Prolog rules are used for visual inference

the self-explanation effect. Thiis paper discusses its de- and other kinds of uiinteresting, non-lea
edge.



STUDYING EXAMPLES example line.

A physics example consists of a problem, then a list of The second type of analogy is much more focussed

lines, where a line can be a force diagram, an equation than the one just described. At the beginning of a

or a few sentences. For uniformity, Cascade represents problem solving attempt, students say something like

all lines as equations, which require inventing some "This is just like example 6" and open the book to
"algebraic" operators for representing diagrams and the appropriate page. Although they probably look

sentences, at the diagrams, they generally do not read much of
the example. As they work through their problem,

Two fairly distinctive behaviors are common when stu- they sometimes refer directly to a line in the example
dents study an example line. One is self-explanation, without reading the preceding lines.
Students try to rederive the line, almost as if they are
checking the work of the example's author. Students Cascade models this kind of analo with a mechanism
virtually never reflect on the overall solution and try called analogical search control. At the beginning of a
to recognize a plan that spans all the lines. Their self- problem, it retrieves an example and forms a mappingexplanations are local to a single line. Cascade models just as in transformational analogy. Whenever Gas-
self-explanation by proving the line. If the search for cade needs to choose among several rules for achievinga proof succeeds, the derivation is stored as a set of a goal, it uses the map to find an equivalent goal in thepairs, each consisting of a goal and the Cascade rule example's derivation, and if it succeeds, it applies theused to achieve that goal. rule paired with that goal during self-explanation. If itfails to find such a goal, perhaps because the example's
The second behavior observed during example study- lines were not self-explained, then Cascade chooses the
ing consists of simply r-ading the line, and sometimes first rule that matches the goal. If this choice fails. wil!
paraphrasing it. Students undoubtedly engage in pars- back up and try the next rule that matches. Analogical
ing and reference resolution (e.g., determining that search control is thus a heuristic for choosing rules. It
"Fa" refers to the force exerted by string A on the is also a form of learning, because every time an exam-
block), and these processes also occur as a front end ple is explained or a problem is solved, its derivation is
to self- explanation. Instead of modeling them, Cas- saved and thus adds more heuristic power for choosing
cade presents lines as parsed expressions with all refer- rules. Analogical search control is similar to the search
ing terms replaced by their definitions. These data control learning of Eureka (Jones, 1989).
structures model the output of the parsing and dis-
ambiguating processes. Thus, to model this second
strategy for studying a line, Cascade simply stores the
line in memory. The textbook does not mention all the physics knowl-

edge needed for explaining the examples and solving
ANALOGICAL PROBLEM SOLVING the problems. Many previous simulations of textbook

learning (e.g., Cohen, 1990; VanLehn, 1987) have found
There are two rather distinct types of analogical prob- the same incompleteness. In order to model this in-
lem solving evident in the protocols. In the first type, completeness, we first constructed a knowledge base
students read through an example, starting at the be- sufficient to solve all the problems and explain all the
ginning and stopping when they find a line they can examples. We asked two people not involved in the
use for the problem they are working on. Cascade construction of the rules to judge whether each rule
models this with a kind of transformational analogy was mentioned in the textbook. The judges agreed
(Carbonell, 1986). The givens of a problem are repre- 95% of the time, and disagreements were settled by a
sented as a set of ground literals, such as third judge. Of the 62 physics rules, only 29 (47%)

tied-to(stringl,bl). were judged to be present in the textbook. Because
To perform an analog), CaLscade retrieves an example, some students get most of the problems correct, either
partially matches its givens to the givens of the prob- they knew the missing knowledge already or they ac-
lem, and saves the resulting mapping. [Some details: quired new rules as the studied examples and solved
Retrieval is not currently modelled in Cascade. It is problems. There is some empirical evidence against
simply told which examples go with which problems. the prior knowledge account (VanLehn, Jones & Chi,
Partial matching enumerates all constant-to- constant in press), so Cascade is based on the hypothesis that
mappings, subject to some type constraints (e.g., con- students learn the missing rules.
stants denoting situatins may not be mapped to con-
stants denoting plysical objects). Partial matching Cascade uses explanation-based learning of correct-
then picks the mapping that maximi?P the iiunber of ness (VanLehn, Ball , Kowalski, l19t)) to model do-
hteral ir';, tha t are pu l n to I- , co rrespo n- ma ie i pn ,. ec a g oa n .lh:" n k noe ai ,, ; t
dence.] Example lines are represented as equations. achieve its present goal with any known domain rule,
To see if an example line is useful, transformational it uses a "non-domain" rule. Such rules are distinc-
analogy applies the saved mapping to it, which yields tively marked in order to represent the belief that
an equation expressed in terms of the problem instead they are part of some other task domain (e.g., corn-
of the example. If this equation matches the current mon sense physics) or are incorrect. I"or instance, one

goal, it is ucI. If not, Cascade moves on to the next non-domain rule is, "The propvr;\ \ ie of a quan-



tity is a function of the property value of one of its EBLC is similar to other knowledge-level learning meth-
defining parts." This rule is overly general and hence ods whose non-domain rules take the form of explana-
incorrect. However, Cascade uses it to prove the ex- tion patterns (Schank, 1986), causal attribution rules
ample line, "The incline of the normal force on block-1 (Pazzani, Dyer & Flowers, 1986; Lewis, 1988) and de-
by surface-1 is perpendicular to the incline of surface- terminations (Widma-, 1989). EBLC uses the same
1." A new domain rule is created from this proof by format for both domain and non- domain rules, which
specializing the non-domain rule. In this case, the new should simplify acquisition of non-domain rules via
domain rule is, "The incline of a normal force on B by syntactic generalization. Also, EBLC operates during
S is perpendicular to the incline of S." This rule is both problem solving and example explaining, whereas
correct, most of its predecessors operate only while explaining

Most of the overly general rules required fur learning examples, and thus did not need the strong search con-

correct domain rules have the same characteristics as trol that analogical search control provides. The dis-

the one just mentioned. They all move property values covery of the interaction between search control learn-

from objects to related objects. However, there are 3 ing and this class of knowledge level learning may be

occasions where new types of forces are used without the most important technical contribution of the Cas-

any introduction or explanation, and these could not cade research.

be handled with such property-value manipulations.
For instance, one problem asserts that an object is TAKING THE EXAMPLE'S WORD
prevented from sliding down an inclined plane by a FOR IT
spring that is at the bottom of the plane. This re-
quires inventing a new object (a force), so manipulat- One of the original 62 domain rules could not be learned
ing property values will not handle this case. In order via EBLC from overly general rules nor from common
to handle such learning events, we gave Cascade non- sense physics. The rule applies first in an example
domain rules for common sense physics, including a and then in a series of problems, all of which have
rule that says that compressed springs push back. We three strings converging on a knot, with various forces
also gave it overly general rules that convert common pulling on each of the strings. The rule simply says
sense physics to proper physics. One such rule is, "If that the knot is the body (which means that forces will
object X pushes on object Y, then there is a force on be resolved on it). The text leads students to believe
Y due to X." that bodies are physical objects with mass, but the

These force-invention cases demonstrate that the suc- strings are massless and so presumably are the knots.All the subjects that self-explained the example line
cess of explanation-based learning of correctness is not stating that the knot was the body found the line con-

a foregone conclusion. It may seem like a learning

method that cannot fail, as the only constraint on the fusing. After searching in vain for an explanation, they

content of the overly general rules is the inventive- all wound up "taking the example's word for it." That

ness of the rules' writer. However, because we could is, they accepted the line as correct even though they

not handle the force-invention cases by just invent- could not derive it themselves. On subsequent three-

ing overly general rules, we had to adopt a different string problems, they would again make the assump-

approach, which is based on the intuitively plausible tion that the knot is the body, often referring to the

hypothesis (espoused by di Sessa, 1983, among others) example by name.

that formal physics is acquired by refining and adjust- To model this behavior, we tried syntactic techniques
ing one's naive physics. for learning by completing explanations (e.g., Van-

Because Cascade applies explanation-based learning of Lehn, 1987; Hall, 1988), but could not get the rule
corectnsse CsCad alis eso on -fase toachiee of learned during the example to apply to all the prob-correctness (EBLC) as soon as it fails to achieve a lems. We relaxed transformational analogy enough to
goal, it is deadly for Cacade to stray from a solution allow it to transfer the knowledge from examples to
path, for it has no way to tell whether the failure at problems, but this made it too liberal, and it often
the end of a dead end is caused by missing domain transferred incorrect knowledge. WVe solved the prob-

knowledge or by having made a wrong search control lem with an ad hoc but interesting method. When the

decision earlier. In the latter case, EBLC will still be le elane ho t te exme's Word for
tried and may learn an incorrect rule. Avoiding fall- example explainer has to "take the example's word for
uried ands my eaern ahn exlainicn g rleai fa- it," it builds a special rule that says, "If the goal is to
ure paths is easier when explaining an example, for find a body, try a transformational analogy to the knot
the goals mention values as well as sought quantities, of example sx," where example sx is the one with the
and the form of ti e value often eliminates some of three strings in it. Thus, Cascade learns which kind of
the false choices. WVe found that during problem solv- situations are good ones for applying transformational

ing, when goals usually mention only sought quantities analogy.

and not their values, zuihc other form of search control

was necessary in order to prevent EBLC from learn-
ing incorrect rules. We were surprised (and delighted) EVALUATION
to find that analogical search control provided enough
constraint to allow EBLC to learn only correct rules The mechanisms of Cascade were constructed to sim-

during problem solving, ulate behavior directly visible in the protocols and to
model learning inferred from the protocols. It is not



clear whether these mechanisms will actually repro- gies for studying examples are modelled, as well as
duce the self-explanation effect found by Chi et al. several types of analogical reference. The research has
Although the effect consists of correlations between also shown that Cascade reproduces the general corre-
five measures (VanLehn, Jones & Chi, in press), we lations observed in aggregate data, especially the most
will here discuss only the most important correlation: important correlation, which indicates that amount of
Students who utter more self-explanatory statements learning is related to amount of self-explanation.
while studying examples also answer more problems The next step in the research is to try to fit the proto-
correctly. cols of individual subjects. Given a student's protocol,

Our hypothesis thL-.t +he correlation is caused by a Cascade will be forced to explain exactly those lines
strategy difference rather than a prior knowledge dif- that the student explained. Will this cause Cascade
ference. Thus, we ran Cascade twice and gave it the to make the same errors as the subject? If the subject
same prior knowledge both times (the 29 rules judged makes errors that Cascade does not and Cascade uses a
to be mentioned in the text). On the so-called Good rule that it learned via EBLC, then EBLC may be too
Student run, we had Cascade self-explain every line powerful. If the student makes an error that Cascade
of all 3 examples from the Chi et al. study. On the does not and Cascade uses only the 29 prior knowledge
Poor Student run, we had it explain no lines. As ex- rules, then our assumption that students all have the
pected, this strategy difference during example study- same prior knowledge is inaccurate. If Cascade makes
ing caused a large difference during problem solving, errors that the subject does not, then the subject may
The Good Student solved all 23 of the Chi et al. prob- have used some kind of learning that Cascade does
lems correctly, while the Poor Student solved only 9 not model. Thus, this further work should test our
problems correctly. Because Cascade is deterministic, hypothesis that the self- explanation effect is caused
explaining an intermediate number of example lines by a strategy difference and not by a prior knowledge
would have caused an intermediate score on the prob- difference, and it should help determine whether Cas-
le-m solving phase. Thus, Cascade does reproduce the cade's learning models are appropriate and complete.
observed correlation. Although it would be premature to diaw strong con-
According to Cascade, there are several sources for clusions about the psychological adequacy of Cascade
this correlation. First, when more lines are explained, from the present research, the work taught us much
there is more opportunity for Cascade to stumble across about the technical difficulties of integrating several
gaps in its dmain knowledge. These gaps cause EBLC, types of learning and problem solving. EBLC looked
which fills in the gaps with new domain rules. The like it could not fail to learn, as we could write any
Good Student learned 7 rules during example study- overly general rule we liked. Moreover, it seemed cer-
ing. Of course, the Poor Student learned none, as it tain that it would reproduce the self- explanation ef-
didn't even process the examples. fect, because only the self- explaining students pro-

The Good Student learned 15 rules during problem cessed the examples and we thought all learning oc-
solving. Of these, 3 were also learned by the Poor curred there. However, we found it impossible to get
Student. In order to determine why the Good stu- EBLC to learn with just overly general rules; we had
dent learned 12 more rules than the Poor student, we to embrace diSessa's hypothesis that formal physics
ran Cascade on the problems with analogical search evolves from naive physics. We also found that most

control turned off. It was given the 36 Good Student rules are not learned during example explaining, but
rules (29 rules from initial knowledge and the 7 rules during problem solving. So why does explaining the
learned during example studying). It learned 3 of the examples help? It turns out the examples help be-

12 rules that were learned by the Good student and cause they control the search (via analogical search
not the Poor student. This shows that the knowledge control) during problem solving Without such search

acquired during example studying set up contexts dur- control, Cascade wanders down false paths and EBLC

ing problem solving that enabled further rule acquisi- learns incorrect rules. In short, we learned that the

tion In order to control search enough to learn the self-explanation effect is not due solely to knowledge-
remaining 9 rules. analogical search control was nec- level learning, but that search control learning is nec-

essary. To put it another way, of the 22 rules learned essary in order to properly bias knowledge- level learn-
by the Good student, 3 can be learned (uring problem ing. This may be a general principle that applies to all
solving eveie if the examples are not self- explained, ELC-like learning methods (e.g., Lewis, 1p8b; eaz-

10 can be learned by self-explaining the examples, and zani, Dyer & Flowers, 1986; Schank, 1986; Widmar,

9 require both self-explanation and analogical search 1989) and perhaps even to all impasse or failure driven

control. knowledge-level learning methods.
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